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Abstract. Using the transfer-matrix technique to describe transport properties in multichannel-
multilayer systems, a three-term non-commutative matrix recurrence relation is deduced and
solved. The matrix polynomials obtained in this way allow one to write compact expressions for
the n-cell transmission amplitudes,(tn)ij , from channelj to channeli. In the one-dimensional,
one-channel limit, the non-commutative polynomials reduce to the well known Chebyshev
orthogonal polynomials. To illustrate the role of these polynomials in the resonant tunnelling
and channel-mixing behaviour, we discuss one- and two-channel examples.

1. Introduction

Recent developments in thin-film epitaxial growth techniques have generated increasing
interest in theoretical and experimental research on transport properties of finite multilayer
systems. These properties have been investigated in a variety of arrays of alternating thin
layers with different bandgaps. However, most of the studied heterostructures contain just
a few layers, i.e. double- and triple-barrier systems [1–4].

Well established theories like Bloch’s theorem, diagrammatic Green function techniques
and some general properties of macroscopic ordered systems have been useful in the
understanding of transport properties of metals and semiconductors. At the mesoscopic
scale of locally periodic heterostructures, these methods, applied to evaluate transmission
coefficients in quasi one-dimensional (1D) systems [5], were restricted to rather few
propagating modes, mainly one. As the number of propagating modes grows or the number
of layers increases, any analytical description within these approaches becomes impossible.
It is for this kind of system that the method discussed here could be appropriate. Some
properties appearing when more than one propagating mode is present, like the resonant
tunnelling, band structure and channel-mixing effects, seem to be better described in terms
of orthogonal non-commutative polynomials.

In nanostructured devices with finite transverse section more than one physical state is
normally involved. In electronic scattering theory [6] the transverse quantum states have
been useful to introduce multichannel transfer matrices. Normally, channels are defined
depending on the physical model envisioned. In this sense, light and heavy holes, or any
other propagating modes, are physical realizations of channels.

Using well known transfer-matrix properties together with the local periodicity of these
systems, simple recurrence relations for the transfer-matrix blocks are obtained. From
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these relations, both compact formulae for the relevant scattering amplitudes and a non-
commutative three-term recurrence relation are deduced. The recurrence relation is solved
using the generating function method and a new set of non-commutative polynomials
is obtained. In the 1D limit, with only one propagating mode, the non-commutative
polynomials reduce to the well known Chebyshev orthogonal polynomials of the second
class. From the physical point of view, it is important to note that all of the information
of the complicated, although coherent, scattering process due to multiple reflections and
interfering phenomena along then-cells of the superlattice, is contained in these polynomials.
This is particularly clear in the 1D one-channel case where the band structure and resonant
behaviour is strongly determined by the Chebyshev polynomial properties. This is shown
in the first example of section 4.

To define the kind of systems which we are interested in, we outline in section 2
some well known quantum results and establish new scattering relations, which we claim
are useful and appropriate to describe tunnelling properties in finite periodic systems. In
section 3, new and compact formulae for theN -channel (two and four probe) Landauer
conductance, and a new set of non-commutative orthogonal polynomials are deduced. In
the last section, we give some simple examples. In the one-channel limit, we deal first
with a very general example. Without specifying any particular 1D potential profile, we
write the transfer matrix in a form which is common to each and every one of the specific
potential profiles, i.e. we take the transfer matrix in the Bargmann representation and analyse
the transmission resonances and the band structure in terms of Bargmann parameters.
In this general representation, it is absolutely clear that in all of the 1D one-channel
superlattices, the resonant behaviour bears a strong relation to the associated Chebyshev
polynomial behaviour. We also apply our results to specific and familiar potential shapes:
the square- and theδ-barrier potentials. To illustrate the use of this method in a multimode
transport process with channel mixing, we consider a simple two-channel bilayer sequence
ABABA . . . B, with B a monolayer ofδ-scatterers. Though the results presented here are
appropriate to evaluate transport properties through multilayer-multichannel, time-reversal-
invariant superlattices, the method can also be applied to other universality classes. Our
results extend easily to systems under a magnetic field.

2. The transfer matrix and the matrix recurrence relation

In the scattering approach to transport processes, the transfer matrixM connecting
wavevectors at the left- and right-hand sides of the scatterer system contains all the
information required to calculate reflection and transmission amplitudes. The same applies
to the transfer matrixMfd which relates wavefunctions and their derivatives, mostly used
in solid-state physics and related toM by a simple unitary transformation.

In order to define what we mean by a multichannel transfer matrix, let us consider an
electronic transport process through a 3D system (of lengthl = zR−zL, and transverse cross
sectionwxwy), connected to perfect leads (or waveguides) of equal cross section. Due to
the finiteness of this cross section, the potential function can be separated into, at least, two
parts: a transverse hard wall potentialVT(x, y), independent of the growing coordinatez,
and a potentialVP(x, y, z), periodic at least as a function ofz. For a given Fermi energy
EF, the transverse eigenfunctionsφnxny (x, y) and the eigenvaluesEnxny are easily obtained
in the leads and those regions whereVP = 0. The electrons with energyE = EF populating
these transverse modes, propagate along the directionz as plane waves with longitudinal
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wavenumbers

k2
z,i =

2m

h̄2 E − π2

(
n2
x

w2
x
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w2
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)
= k2− k2

T,i .

Each pair{nx, ny} defines a channel, considered non-evanescent whenkz,i is real. If we
write the Schr̈odinger wavefunction as

ψ(x, y, z) =
N∑
i

ϕi(z)φi(x, y) for zL 6 z 6 zR

whereN is the number of propagating modes, we obtain the well known system of coupled
equations [7]

d2

dz2
ϕi(z)+ (k2− k2

Ti )ϕi(z) =
N∑
j=1

Kijϕj (z) (1)

with channel coupling constants defined by

Kij = 2m∗e
wxwyh̄

2

∫ wy

0

∫ wx

0
φ∗i (x, y)VP(x, y, z)φj (x, y)dx dy. (2)

In this way, the 3D multichannel problem is reduced into a 1D multichannel problem. Using
the transfer matrix method, we will go further and reduce the problem into a one-cell 1D
multichannel problem.

Let us consider a single cell extending fromz1 to z2. Assume also that at these points
the propagating wavefunctions can be written as

ψ(z1) =
∑
i

[ai
→
ϕ i (z1)+ bi

←
ϕ i (z1)]

and

ψ(z2) =
∑
i

[ci
→
ϕ i (z2)+ di

←
ϕ i (z2)]

with
→
ϕi and

←
ϕi travelling waves (in channeli) to the right and left, respectively. To define

the transfer matrix, which connects wavevectors betweenz1 andz2, it is convenient to write
the previous wavefunctions as 2N -dimensional vectors. So, we have

φL(z1) =
(→
φ L(z1)←
φ L(z1)

)
with

→
φ L(z) =

 a1
→
ϕ 1(z)
...

aN
→
ϕN(z)


and

←
φ L(z) =

 b1
←
ϕ 1(z)
...

bN
←
ϕN(z)

 (3)

and similar ones atz2 and inside the cell. Finiteness and smooth matching requirements
lead to

φR(z2) = M(z1, z2)φL(z1) (4)

whereM(z1, z2), or just M, is the single-cellN -channel transfer matrix of dimension
2N × 2N and complex entries. Although transfer matrices are clearly defined, the explicit
calculation for more than one channel is not generally straightforward. It may require
powerful mathematical techniques, see for example [8].
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In general, for a time reversal invariant (TRI) andspin-independentscattering processes
(i.e. for systems of the orthogonal universality class) the transfer matrices have the following
structure

Mo =
(
α β

β∗ α∗

)
(5)

with α and β, N × N complex sub-matrices. For TRI andspin-dependentscattering
processes (of the symplectic universality class), the matrices take the form [9]

Ms =
(

αs βs
κβ∗s κ

T κα∗s κ
T

)
with κ =

(
0 IN
−IN 0

)
whereαs andβs, are 2N ×2N complex sub-matrices for spin-1

2 particles. In the following,
we shall refer only to the orthogonal class, thus the subindex o will not be used in theM

matrix.
Additionally, it is known that flux conservation (FC) requires the fulfillment of

M6z M
† = 6z (6)

where6z is the generalizedσz Pauli matrix. This requirement has, of course, consequences
on the final symmetries and possible representations of the transfer matrix [9]. A particular
representation compatible with FC, is the Bargmann’s parametrization

M =
(
u 0
0 u∗

)(
coshχ sinhχ
sinhχ coshχ

)(
v 0
0 v∗

)
whereu andv are unitary matrices, andχ a positive diagonal matrix.

Since we are interested in obtaining transmission amplitudes, we recall that the transfer
matrix, in the orthogonal universality class, can also be written as [6]

M =
(

(t†)−1 −(t†)−1r∗

−(tT)−1r (tT)−1

)
(7)

with t andr the transmission and reflection amplitudes.
If we put two identical layers of lengthL/n and transfer matricesM side by side, the

resulting system has length 2L/n, and transfer matrixM2 = MM. The repeated application
of this combination property leads us to express the transfer matrix, for then identical-cell
system, as

Mn = Mn =
(
α β

β∗ α∗

)n
≡
(
αn βn
β∗n α∗n

)
. (8)

Our main objective is to expressαn and βn as simple functions ofα and β, and then to
obtain simple functions for the multilayer transmission amplitudes. For this purpose we
shall deduce and solve some recurrence relations. FromMn = MMn−1, we have

αn = ααn−1+ ββ∗n−1

βn = αβn−1+ βα∗n−1 (9)

and obtain

αn+1− Aαn + Bαn−1 = 0 with α0 = IN
βn+1− Aβn + Bβn−1 = 0 with β0 = 0. (10)

Here,A = α + βα∗β−1 and B = β (α∗β−1α − β∗) . We find it convenient to define the
function

pN,n = β−1βn+1 (11)
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which for simplicity will be written just aspn, unless the number of channelsN needs to
be specified. Using these functions we get the very important matrix recurrence relation
(MRR)

pn − ζpn−1+ ηpn−2 = 0 for n > 1 (12)

where p−1 = 0, p0 = IN (the unit matrix of dimensionN ), ζ = (β−1αβ + α∗) and
η = (α∗β−1αβ − β∗β). It is easy to see that for the one-channel case the MRR is just the
recurrence relation for Chebyshev polynomials. In the next section, this matrix recurrence
relation will be solved and the physical quantities will be expressed in terms of its solution:
the non-commutative polynomialspn.

3. The scattering amplitudes and the non-commutative polynomials

The non-commutative relation (12) resembles the well known three-term orthogonal-
polynomial recurrence relations. The non-commutative character of the various factors
involved makes the problem not only interesting from the physical but also from the
mathematical point of view, as there is a lot of ongoing research on non-commutative
symmetric functions [10]. As mentioned before, in the particular case ofN = 1 we have
the recurrence relation for the Chebyshev polynomials of the second kind,Un((α + α∗)/2).
In this case, we find (see [11]) previous work consistent with our results. In terms of
the polynomialspn, the n-cell transmission amplitude,tn, and the four-probe Landauer
conductance both take compact forms. Usingβn = βpn−1, andtn = (α†n)−1, we immediately
obtain

tTn = (pn − (β−1αβ)pn−1)
−1. (13)

Having t, the two-probe Landauer conductance,Gn = Tr(tt†) in units ofe2/πh̄, is obvious.
Moreover, for the four-probe Landauer conductance,Gn, we have

Gn = 1

pn−1
G

(
1

pn−1

)†
. (14)

HereG is the single-cell conductance|t/r|2 , in units of e2/πh̄. Both tn (thusGn) andGn

are simple functions of the polynomialpn−1, and the single-cell physical quantities. It is
now clear, as mentioned before, that the polynomial’s zeros determine the transmission and
conductance resonances. The information on the multiple reflection from the conduction
band discontinuities, and phase interference phenomena along the system, is also carried by
these polynomials. Our next aim is to solve the MRR and to obtain thepn polynomials.

Although the MRR can be directly solved, we found it convenient to transform it into a
recurrence relation with scalar coefficients (though many more terms). As could be expected,
the new recurrence relation takes a form completely consistent with the Cayley–Hamilton
theorem applied toM. In this case we have

Mn+2N + g1Mn+2N−1+ · · · + g2N−1Mn+1+ g2NMn = 0 (15)

where gm are scalar symmetric homogeneous functions. Thisscalar recurrence relation
(SRR) can, of course, be written withβm or αm instead ofMm, and also for the polynomials
pm introduced before as

pn+2N + g1pn+2N−1+ · · · + g2Npn = 0 (16)

with n > 0, and the same coefficientsgm.
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We shall first consider the generating function

Q(λ) = IN

1+ g1λ+ g2λ2+ · · · + g2Nλ2N
=
∑
m=0

qmλ
m (17)

whereλ is a complex matrix (for example, the diagonal matrix of the eigenvaluesλi of M).
The coefficientsqm are just complex scalars. They satisfy the SRR and the 2N conditions

k∑
j=0

gjqk−j = δk,0 k = 0, 1, . . . ,2N − 1 (18)

but they do not satisfy the MRR, except in the one-channel case. Using (12) we can obtain
p0, p1, . . . , andp2N−1. We call these functions the initial conditions. They are different
from q0, q1, . . . , andq2N−1, obtained from (18). Even with this observation, theqm are
still useful. Since theλi are solutions of the scalar recurrence relation, we can take the
combination

qn = s1λn1 + s2λn2 + · · · + s2Nλn2N (19)

and determine the coefficientssi . If we replace this combination in (18), we have

2N∑
i=1

dkisi = δk,0 k = 0, 1, . . . ,2N − 1 (20)

with

dki = λki + g1λ
k−1
i + · · · + gk−1λi + gk. (21)

Now we can use the well known symmetric homogeneous functions

gm =
2N∑

l1<l2<···<lm
λl1λl2 . . . λlm (22)

and obtain

si = λ2N−1
i∏2N

j 6=i (λi − λj )
. (23)

Thus,

qn =
∑ λ2N+n−1

i∏2N
j 6=i (λi − λj )

. (24)

This is not yet the polynomial we are looking for; however, forN = 1 this scalar polynomial
reduces to the Chebyshev polynomialUn evaluated at TrM/2. To fulfil the proper initial
conditions (defined by the MRR) one has to consider the generating function

(IN + ρ1λ+ ρ2λ
2+ · · · + ρ2N−1λ

2N−1) Q(λ) =
∑
m=0

pmλ
m (25)

with pm =
∑m

k=0 ρkqm−k, whenm 6 2N − 1, andpm=
∑2N−1

k=0 ρkqm−k, whenm > 2N .
The MRR initial conditions are satisfied if and only if

ρk = pk + g1pk−1+ · · · + gkp0 k = 1, . . . ,2N − 1 (26)

therefore

pN,m =
2N−1∑
k=0

k∑
l=0

plgk−lqm−k whenm > 2N. (27)
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Figure 1. One- andn-cell Landauer conductances and transmission probabilities as functions of
the free parametersφ = φu−φv andχ , for arbitrary one-channel potential functions. In (a) and
(c) φ is kept fixed, while in (b) and (d) χ is kept fixed. For specific potential profiles, these
parameters are energy dependent. In (b) and (d), the polynomialp1,4 is also shown. Clearly,
its zeros determine the resonances.

This is one of our main results. It gives the non-commutative polynomialspN,m in terms
of the invariant functionsgm and qm, and the first 2N − 1 polynomialspl obtained from
the MRR. Once having the polynomialspN,n, tunnelling probabilities can be calculated
including transverse channel mixing. The common polynomial factors suggest certain
universality in the evolution through a superlattice. It will be of interest to extend this
method to include electric fields.

4. Some physical examples

Let us now discuss one- and two-channel examples. In one-channel, 1D systems the
transmission amplitude through then-cell chain is obtained from

tn = t∗
(
λn+1

1 − λn+1
2

λ1− λ2
t∗ − λ

n
1 − λn2
λ1− λ2

)−1

. (28)

Independently of the particular and specific potential profile, the single-cell transmission
amplitude and the transfer-matrix eigenvalues can be written in the Bargmann representation
as

t = eiφ 1

coshχ
(29)

and

λ1,2 = cosφ coshχ ±
√
(cosφ coshχ)2− 1 (30)

with φ ∈ [0, 2π) and χ ∈ [0,∞) being the Bargmann parameters. Let us look at the
behaviour of|tn|2 andGn as functions of these parameters. In figure 1(a), the transmission
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probabilities|t |2 and|tn|2 are shown as functions ofχ , whenφ = 1, whereas in figure 1(b)
the same quantities are plotted as functions ofφ but now keepingχ = 1. In figures 1(c)
and 1(d) the Landauer conductancesG andGn are plotted for the same conditions.

To exhibit the role of the Chebyshev polynomial in the resonant behaviour of|tn|2
andGn, we also plot the former in figures 1(b) and 1(d). The polynomialsp1,n−1 clearly
determine the position and width of the allowed bands and tunnelling resonances. This is an
interesting result, particularly when dealing withN -channel superlattices, where the matrix
polynomialspN,n are closely linked to the channel-mixing probabilities|tN,ij |2.

In figure 2, we plot transmission probabilities for 1D square- andδ-barrier potential
chains, as functions of the energy. More precisely, we calculate the transmission
probabilities between the left-hand side of the first, and the right-hand side of the last
layer B in the sequenceA′BABA . . . ABA′. HereB is either a square or a delta barrier,
and theA′ are layers of the same material asA, but different thickness. In this figure,
we have takenn = 11 (i.e. 11 barriers). In figure 2(a) the transmission probabilities|t |2,
|tn|2, and the bandwidth prediction for square barriers of heightVs = 0.23 eV and width
as = 30 Å, separated by a distancebs = 80 Å, are shown. In figure 2(b) the same quantities
are plotted, but now forδ-barrier potentials, of strengthVδ = 0.13 eV separated by a distance
bδ = 130 Å from each other.

Figure 2. One-channel transmission probabilities|t |2 and|tn|2 for n = 11 square- andδ-barrier
potentials, as functions of the energy. In (a) the square barriers are of heightVs = 0.23 eV and
width as = 30 Å, and the valleys of widthbs = 80 Å. In (b) the strength of theδ-barriers,
separated by a distancebδ = 130 Å, is Vδ = 0.13 eV.

If we have more than one open channel, and we assume no incidence in the extreme
right-hand side,tn,ik represents the transmission amplitude from channelk on the left to
channeli in the right. HenceTn,i =

∑
k |tn,ik|2 is the total transmission probability to

channeli.
To illustrate the evaluation of tunnelling properties for more than one channel, we shall

consider the potential functionV = VL + VT, where the transverse partVT is an infinite
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Figure 3. Some coupled and uncoupled two-channel transmission probabilities through a chain
of δ-barriers, as functions of the energy. In the uncoupled limit,|tn,11|2 and|tn,22|2 behave as in
the one-channel case. Here the transverse width is≈30 Å, the separation≈30 Å andn = 4. The
one-channel threshold is≈6.2 eV and the two-channel threshold is≈24.7 eV. When012 6= 0,
the band mixing is shown for|tn,11|2 and |Tn,1|2 in (b) and (c), respectively.

square well of widthsw = wx = wy , while the longitudinal part is given by

VL = γ
[
δ(z− νlc)

∑
µ

δ(x − xµ)δ(y − yµ)
]

with ν = 1, . . . , n.

In order to haveN open channels, we take energies having positive longitudinal
wavenumbersk2

i = k2− k2
Ti , i = 1, . . . , N . Defining the coupling constants

0ij = 2m∗γ
h̄2

∑
µ

φ∗i (xµ, yµ)φj (xµ, yµ) (31)

the two-channelδ-barrier transfer matrix is given by

Mδ =
(
αδ βδ
β∗δ α∗δ

)
where

αδ = I2+ βδ and βδ = 1

2i

(
011/k1 012/k1

021/k2 022/k1

)
. (32)

Here012k2 = 021k1, when flux is conserved. Selected calculations are shown in figure 3.
In figures 3(a) and 3(d), the transmission probabilities|tn,11|2 ≡ |t11|2 and |tn,22|2 ≡ |t22|2
are plotted forn = 4 and012 = 0. In this uncoupledlimit, we have well defined resonant
bands. Their particular positions and widths depend, of course, on the specific choice
for the underlying parameters. As soon as the coupling is turned on, the channel mixing
takes place. In figure 3(b) the tunnelling probability|t11|2 is calculated again. This time,
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tunnelling resonances appear at energies which, in the uncoupled limit, were forbidden for
channel 1 and allowed for channel 2. In figure 3(c) the total transmissionT4,1 =

∑
i |t1i |2

to channel 1 is plotted.

5. Conclusions

Within the scattering approach and the transfer-matrix technique to describeN propagating
modes through locally periodic 3D systems, a three-term recurrence relation for non-
commutative polynomials, as well as compact and closed formulae for transmission and
conductance probabilities, have been deduced. We have solved the matrix recurrence relation
using the generating function method, and a new set of non-commutative polynomials have
been obtained. These matrix polynomials of dimensionN×N contain all of the information
produced by the coherence phenomena in the multimode-multilayer system. Transmission
and conductance probabilities have been calculated for one- and two-channel problems. In
the one-channel case, the total transmission|tn|2 and the four-probe Landauer conductance
Gn were plotted as functions of the Bargmann parameters, leaving the example as arbitrary
as possible. To illustrate the use of our method with more than one open channel, we
considered a 3D confined semiconductor with equidistant planes ofδ-potential scatterer
centres, and we have calculated transmission probabilitiesTn,ij = |tn,ij |2 from channeli to
channelj , for coupled and uncoupled channels. Strong interference effects, like resonance
suppression and new resonant levels, appear because of channel coupling. Concerning the
non-commutative polynomials, we emphasized their relation with the resonant character of
the transport physical quantities and the multiple interference phenomena occurring in these
locally periodic systems.
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